首页
统计
关于
Search
1
Win10安装mingw64配置最新版gcc与gfortran环境
607 阅读
2
李芒果空岛-1.20.1-发展记录-05
584 阅读
3
108第一届中国象棋比赛
541 阅读
4
Savitzky-Golay滤波器原理-01
535 阅读
5
史瓦西黑洞最内稳定圆轨道计算
500 阅读
默认分类
技术经验
工作学习
娱乐爱好
闲言碎语
登录
Search
标签搜索
天文
Minecraft
李芒果空岛
空间物理学
macOS
数值计算
非线性最小二乘
typecho
Python
GSL
gcc
迭代法
Fortran
Halo
朗谬尔波
Langmiur
环法自行车赛
短波通信
PTCG
Win10
Washy
累计撰写
76
篇文章
累计收到
1
条评论
首页
栏目
默认分类
技术经验
工作学习
娱乐爱好
闲言碎语
页面
统计
关于
搜索到
1
篇与
的结果
2023-07-17
使用标势推导朗谬尔波
0 准备工作 引入标势$\varphi$和矢势$\mathbf{A}$,有 $$ \mathbf{E} = -\nabla \varphi, \qquad \mathbf{B} = \nabla \times \mathbf{A} $$ 则麦克斯韦方程组可以写为 $$ \nabla^2 \varphi = - \rho / \varepsilon_0, \qquad \nabla^2 \mathbf{A} - \nabla(\nabla \cdot \mathbf{A}) = - \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \nabla\frac{\partial \varphi}{\partial t} $$ ## 1 求解色散关系 1.1 双流程方程组 对于非磁化等离子体,双流体方程组的电子部分可以写为 $$ \left\{ \begin{split} &\nabla^2 \varphi = - \rho / \varepsilon_0 \\ &\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e \mathbf{u_e}) = 0 \\ &n_e m_e \frac{\partial \mathbf{u_e}}{\partial t} = n_e e \nabla \varphi - \nabla p_e \end{split} \right. \tag{1} $$ 1.2 微扰法和平面波化 微扰法:离子作为正电荷背景,即$n_i = n_0$;设电子数密度由背景量和扰动量组成,即$n_e = n_0 + n_{e1}$。则电荷密度$\rho =-e n_{e1}$。 平面波化:设所有的扰动具有指数项$e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$,即具有平面波的形式,则有$\partial/\partial t = -i\omega$和$\nabla = i\mathbf{k}$。 因此双流体方程中电子部分可以改写为 $$ \left\{ \begin{split} &-k^2 \varphi = \frac{e}{\varepsilon_0} n_{e1} \\ &-i\omega n_{e1} + i n_0 \mathbf{k} \cdot \mathbf{u_e} = 0 \\ &-i\omega n_0 m_e \mathbf{u_e} = i \mathbf{k} n_0 e \varphi - i\mathbf{k} \gamma_e k_B T_e n_{e1} \end{split} \right. \tag{2} $$ 运动速度$\mathbf{u_e}$只考虑波矢$\mathbf{k}$方向的分量。则上述方程组进一步简化为 $$ \left\{ \begin{split} &-k^2 \varphi = \frac{e}{\varepsilon_0} n_{e1} \\ &-\omega n_{e1} + k n_0 u_{e\parallel} = 0 \\ &-\omega n_0 m_e u_{e \parallel} = k n_0 e \varphi - k \gamma_e k_B T_e n_{e1} \end{split} \right. \tag{3} $$ 联立上述方程组第二、第三两个方程,消去$u_{e\parallel}$可得 $$ n_{e1} = \frac{k^2 n_0 e}{k^2 \gamma_e k_B T_e - \omega^2 m_e} \varphi \tag{4} $$ 将上式代入方程组的第一个方程,消去$n_{e1}$和$\varphi$可得朗谬尔波的色散关系为 $$ \omega^2 = \frac{n_0 e^2}{\varepsilon_0 m_e} + \frac{\gamma_e k^2 k_B T_e}{m_e} = \omega_{pe}^2 + \frac{\gamma_e}{2} k^2 v_{the}^2 \tag{5} $$ 2 总结 从上述推导过程可以看出,使用标势推导色散关系相对而言更为简洁,且结论一致。标势的引入,也更有利于将结论推广至弯曲时空。此处,只是一个简单的尝试和复习以前的知识,并无独创之处。
2023年07月17日
167 阅读
0 评论
0 点赞